1. Six Benefits of IPv6

Address Abundance

IPv6 has 3.4 x 10^{38} addresses – 340 trillion trillion trillion – vs IPv4 with only 4.3 billion.

Easier Network Management

Networks are simpler, flatter, more easily managed. Addresses can be autoconfigured.

Faster Routing

Address header fixed at 40 bytes, means faster, more efficient packet forwarding.

Improved Security & Mobility

Support is mandated for authentication and encryption. Mobility connectivity is improved.

End-to-End Transparency

Vast address space means direct connectivity, no NATs, improves performance and security.

Innovation Space

Huge address space allows billions of devices, necessary for IoT, cloud, mobiles, wearables.

See more at: 6now.net/whyipv6.php

2. IPv6 Address Formats

IPv6 format is hexadecimal. Here is 0 to 15 in binary (machine) format, decimal (IPv4) and hex (IPv6):

Binary	Dec.	Hex	Binary	Dec.	Hex
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	a
0011	3	3	1011	11	b
0100	4	4	1100	12	С
0101	5	5	1101	13	d
0110	6	6	1110	14	е
0111	7	7	1111	15	f

Addresses in IPv4

Bit = 0 or 1, Byte = 8 bits, e.g. 00010110 IPv4 is written as 32 bits in 4 bytes, e.g. 11000000 10101000 00000001 00000000 In decimal format = 192.168.1.0

Addresses in IPv6

In hex format = 2001:db8:0:0:1234:0:0:1

From Binary to Hex

How to convert a binary IPv6 address to hex:

- 2. Convert the binary to hex 20010db800000000123400000000001
- 3. Put into 8 groups of 4 separated by colons 2001:0db8:0000:0000:1234:0000:0000:0001
- 4. (Optional) Drop the leading zeros 2001: db8:0:0:1234:0:0:1
- 5. (Optional) Collapse ONE ONLY group of zeros to double colons –

2001:db8::1234:0:0:1 or 2001:db8:0:0:1234::1

3. Prefixes and Subnets

The bits on the left side of an IPv6 address specify the network *prefix*, and all of the addresses in a network have the same prefix.

/N (slash-N) is shorthand for a prefix N bits long, e.g. shorthand for all addresses in the 32-bit network with the prefix 2001:0db8 is 2001:db8::/32

A typical IPv6 address might have 48 bits of prefix and 16 bits of subnet:

2001:db8:0: abcd: 1234:0:0:7
48 bit prefix + 16 bit subnet + 64 bit host

Network 2001:db8:0::/48 Subnet 2001:db8:0:abcd::/64 Host 2001:db8:0:abcd:1234::7

Sizes of Subnets

A standard small IPv6 subnet will usually be assigned a /64 prefix, which is 4.3 billion times the size of the current IPv4 Internet.

Type of network	Prefix	No. of addresses
Standard small	/64	1.8 x 10 ¹⁹
Enterprise network	/48	65,536 subnets, each of /64 size
Service provider	/32	65,536 subnets, each of /48 size

To calculate the number of subnets in a network prefix, take the difference between the network and subnet sizes, and raise to the power of 2.

e.g. How many /48 subnets in a /32? 48 - 32 = 16 and $2^{16} = 65.536$

See more: 6now.net/primers/IPv6PrefixPrimer.php

Prefixes and Numbers of Addresses

Prefix Number of Addresses		Equivalent Quantity	
/0	3.4 x 10 ³⁸	All possible IPv6 addresses	
/8	1.3 x 10 ³⁶	1/3 of watts luminosity of Milky Way	
/16	5.2 x 10 ³³	Sun's energy in joules in 6 months	
/24	2.0 x 10 ³¹	20 times the no. of bacteria on Earth	
/32	7.9 x 10 ²⁸	42 times mass of Jupiter in kilograms	
/40	3.1 x 10 ²⁶	3 x diameter of Universe in metres	
/48	1.2 x 10 ²⁴	20 x number of stars in the Universe	
/56	4.7 x 10 ²¹	2 x number of grains of sand on Earth	
/64	1.8 x 10 ¹⁹	18 x number of insects on Earth	
/72	7.2 x 10 ¹⁶	Earth to closest star & back in metres	
/80	2.8 x 10 ¹⁴	No. of leaves on all trees on Earth	
/88	1.1 x 10 ¹²	3 x number of stars in the Milky Way	
/96	4.3 x 10 ⁹	All possible IPv4 addresses	
/104	16,777,216		
/112	65,536		
/120	256		
/128	1		

Even a /96 prefix network, miniscule in IPv6 terms. is the size of the *entire* IPv4 Internet.

Maximum number of IPv4 addresses possible: 4.294.967.296

Maximum no. of IPv6 addresses possible: 340,282,366,920,938,463,463,374,607,431,768,21 1,456

4. IPv6 Address Types

Unicast - single address, uniquely receives traffic.

Anycast – unicast address on multiple interfaces, *any one* receives traffic.

Multicast – address for multiple interfaces, *all of which* receive traffic. Listeners join multicast group and hosts send only to that group.

Defined Address Prefixes

Default route	::/0
Unspecified address	::/128
Loopback/localhost	::1/128
IPv4-mapped IPv6	::ffff:0:0/96
Unique Local unicast	fc00::/7
Link-Local unicast	fe80::/10
Multicast	ff00::/8
Global unicast	2000::/3
Documentation	2001:db8::/32
Benchmarking	2001:0002::/48
Teredo	2001:0000::/32
6to4 space	2002::/16
Well-Known translated IPv4	64:ff9b::/96

5. Host Address Allocation

Static IPv6 Addresses

IPv6 addresses can simply be assigned as in IPv4.

Stateless Address Autoconfiguration (SLAAC)

Plug in, switch on, globally routable. With SLAAC, a host configures its own address: the address is *generated*, not allocated.

Benefits: low cost, huge scalability, fast, no host configuration, universally supported, no servers required, can assign globally routable addresses.

Drawbacks: less secure, fails rapidly and completely on error, no policy hooks, no event logging, little address control, little extra information.

Dynamic Host Configuration (DHCPv6)

Stateful Autoconfiguration: with DHCPv6, a server supplies addresses to hosts in a network: the address is allocated, not generated.

Benefits: Allows address control. Fails more gracefully, has policy hooks and event logging.

Drawbacks: snooping possible, doesn't have boot server, dual-stack issues with information from two sources, DUID is tied to host, not an interface.

6. Commands for Windows and Unix

Unix Commands for IPv6

mtr -6 - host and network route and reachability ping6 - host and network reachability

traceroute6 - traces route to a host

traceroute6 - traces route to a host

tracepath6 - traces route with MTU along path

ifconfig -a - see all network interfaces on host
route -6 - the current routing table

route -6 - the current routing table

netstat – routing tables, interface stats etc.

Windows Commands for IPv6

ping [-4 -6 -i -R -S] tracert [-4 -6 -R -S] pathping [-4 -6]

netstat

ipconfig /all netsh interface ipv6 show

IPv6 Testing, Security, Address Tools

Ping, trace, connectivity – 6now.net/tools.php Security tools – 6now.net/security.php Address management – 6now.net/addresses.php IPv6 tutorials – 6now.net/resources.php